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Spacetime Metric and Lightcone Fluctuations
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Several aspects of the quantum fluctuations of spacetime geometry are discussed.
A model for lightcone fluctuations is described in which a bath of gravitons leads
to metric fluctuations. The operational definitions of such phenomena as lightcone
and horizon fluctuations are examined. The problem of describing fluctuations
of a quantum stress tensor is also discussed. The possibility that one can gain
some insights about spacetime geometry fluctuations from studies of the force
fluctuations on material bodies is suggested.

1. INTRODUCTION

The quantum nature of the gravitational field will necessarily lead to

fluctuations of the spacetime geometry. Even an unquantized gravitational

field coupled to a quantum matter field will experience fluctuations. Thus it

is useful to draw a distinction between ª activeº and ª passiveº metric fluctua-
tions. Active fluctuations are those in which gravity itself is quantized and

the fluctuations are due to the dynamical degrees of freedom of the gravita-

tional field. Passive fluctuations arise when gravity is coupled to a quantized

matter field whose stress tensor is undergoing quantum fluctuations. Both

types of metric fluctuations will cause fluctuations of the classical lightcone,
and hence of horizons. Such fluctuations might be expected to produce a

variety of physical phenomena. Pauli and others [1, 2 ] have speculated that

lightcone fluctuations could act as a universal regulator to remove the diver-

gences of quantum field theory. This hypothesis is yet to be either proven

or disproven. One might also wonder whether or not lightcone fluctuations

could invalidate the classical singularity theorems. These theorems depend
crucially upon assumption of some type of energy condition on the matter-

stress tensor and upon an analysis of the focusing properties of null rays.
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The fact that the classical energy conditions are not fulfilled in general by

the expectation value of a quantum stress tensor has been much discussed.

However, the breakdown of the concept of focusing in quantum theory seems
to have received little attention.

In this paper, we will not attempt to address either ultraviolet divergence

or singularity avoidance, but rather describe some simple models within

which one can attempt to understand better the physical meaning of metric

and lightcone fluctuations. In Section 2, some of the effects of linearized

quantum gravity and its active metric fluctuations are discussed. It is shown
how these lead to lightcone fluctuations and to horizon fluctuations. Black

hole horizon fluctuations even at the Planck scale pose a potentially serious

challenge to the Hawking effect, as is discussed. However, it is argued that

these fluctuations are strongly suppressed, and that their neglect in black hole

evaporation is justified.

In Section 3, some issues associated with the passive metric fluctuations
are discussed. In particular, one must address the problem of defining expecta-

tion values of products of stress tensors. Two possible approaches to this

problem are considered. One of these defines such quantities as the squared

energy density at a point through normal ordering. The other gives up the

notion that such a quantity has any meaning, and attempts to deal only with
finite integrals of stress tensor products. Some consequences of this latter

approach are illustrated with a model of fluctuating electromagnetic forces

on a material body. The paper concludes with a summary and discussion in

Section 4.

2. A MODEL FOR ACTIVE METRIC FLUCTUATIONS

A complete treatment of active metric fluctuations would require a full

quantum theory of gravity, which is not yet available. However, it is still

possible to construct simplified models which one hopes reproduce some of

the features expected in the more complete theory. One of these feature is
quantum fluctuations of the lightcone. In this section, such a model will be

discussed. Although perturbative quantum gravity is plagued with divergence

problems, there is one level on which the notion of a quantized gravitational

field is well defined. This is at the level of quantization of linearized perturba-

tions of a given background spacetime. So long as one does not address

questions about the interaction of gravitons with one another, no ambiguities
arise. This theory is, however, sufficiently rich to contain nontrivial physics.

The physical situation which it describes can be a bath of noninteracting

gravitons on an arbitrary background spacetime. Here we wish to develop a

formalism [3±5] which allows us to describe the effects of this bath upon
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the propagation of light rays on the background, and look for evidence of

lightcone smearing.

Consider an arbitrary background metric g( 0)
m n with a linear perturbation

h m n , so the spacetime metric is2

ds2 5 (g( 0)
m n 1 h m n ) dx m dx n (1)

For any pair of spacetime points x and x8, let s (x, x8) be one half of the

squared geodesic separation in the full metric, and s 0(x, x8) be the correspond-
ing quantity in the background metric. We can expand s (x, x8) in powers of

h m n as

s 5 s 0 1 s 1 1 s 2 1 ? ? ? (2)

where s 1 is first order in h m n , etc. We now suppose that the linearized

perturbation h m n is quantized, and that the quantum state ) c & is a ª vacuumº

state in the sense that we can decompose h m n into positive- and negative-

frequency parts h 1
m n and h 2

m n , respectively, such that

h 1
m n ) c & 5 0, ^ c ) h 2

m n 5 0 (3)

It follows immediately that

^ h m n & 5 0 (4)

in state ) c & . In general, however, ^ (h m n )
2 & Þ 0, where the expectation value

is understood to be suitably renormalized. This reflects the quantum metric
fluctuations.

2.1. Lightcone Fluctuations

We now wish to average the retarded Green’ s function, Gret(x, x8), for

a massless field over the metric fluctuations. In a curved spacetime, Gret(x,

x8) can be nonzero inside the future lightcone as a result of backscattering off

of the spacetime curvature. However, its asymptotic form near the lightcone is

the same as in flat spacetime:

Gret(x, x8) , u (t 2 t8)

4 p
d ( s ), s ® 0 (5)

We will ignore the backscattered portion, and average this delta-function
term over the fluctuations. Equation (5) can be expressed as

2 Units in which " 5 c 5 16 p G 5 1 will be used in this paper. Thus the units of mass, length,
and time differ by factors of ! 16 p from the usual definitions of the Planck mass, Planck
length, and Planck time. The metric signature will be (1, 2 1, 2 1, 2 1).
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Gret(x, x8) 5
u (t 2 t8)

8 p 2 #
`

2 `

d a ei a s 0 ei a s 1 (6)

We next use the relation

^ ei a s 1 & 5 e 2 a 2 ^ s 2
1 & /2 (7)

Thus when we average over the metric fluctuations, the retarded Green’ s

function is replaced by its quantum expectation value:

^ Gret(x, x8) & 5
u (t 2 t8)

8 p 2 #
`

2 `

d a ei a s 0 e 2 a 2 ^ s 2
1 & /2 (8)

This integral converges if ^ s 2
1 & . 0 and can be evaluated to yield

^ Gret(x, x8) & 5
u (t 2 t8)

8 p 2 ! p
2 ^ s 2

1 &
exp 1 2 s 2

0

2 ^ s 2
1 & 2 (9)

Note that this averaged Green’ s function is indeed finite at s 0 5 0 provided

that ^ s 2
1 & Þ 0. Thus the lightcone singularity has been smeared out, as illus-

trated in Fig. 1. Note that the smearing occurs in both the timelike and

spacelike directions.

We can find a general expression for ^ s 2
1 & . Let us first consider timelike

geodesics, for which ds2 . 0. Let u m 5 dx m /d t be the tangent to the geodesic

and t be the proper time. We will define ^ s 2
1 & by integrating along the

unperturbed geodesic, in which case u m is normalized to unity in the back-

ground metric:

g( 0)
m n u

m u n 5 1 (1 0)

The geodesic interval in the unperturbed metric is given by

s 0 5 1±2 ( D t )2 (11)

where D t is the proper time elapsed along the geodesic. We have

ds

d t
5 ! 1 1 h m n u

m u n ’ 1 1
1

2
h m n u

m u n (12)

and hence the geodesic length between a pair of points in the perturbed

metric is D s 5 D t 1 D s1, where

D s1 5
1

2 # d t h m n u
m u n (13)
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Fig. 1. The smearing of the lightcone due to metric fluctuations. A photon which arrives at

point A from the origin has been slowed by the effect of metric fluctuations. A photon which

arrives at point B has been boosted by metric fluctuations, and appears to travel at a superluminal

velocity in the background metric.

Thus

s 5
1

2
( D s)2 5

1

2
( D t )2 1 D t D s1 1 O(h2) (14)

and hence s 1 5 D t D s1. If we average over the metric fluctuations, the result is

^ s 2
1 & 5

1

2
s 0 # d t 1 d t 2 u m

1 u n
1u

r
2u

s
2 ^ h m n (x1)h r s (x2) & (15)

where u m
1 5 dx m /d t 1 and u m

2 5 dx m /d t 2. An analogous expression holds for
the case of a spacelike geodesic, in which the integrations are over the proper

length parameter of the geodesic:

^ s 2
1 & 5 2

1

2
s 0 # d l 1 d l 2 u m

1 u n
1u

r
2u

s
2 ^ h m n (x1)h r s (x2) & (16)

where now u m
1 5 dx m /d l 1 is the tangent to the geodesic, and l is the proper
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length. Here we have s 0 5 2 1±2 ( D l )2. Note that in Eqs. (15) and (16), the

integration is along the mean trajectory of the photon, whereas the actual

path in a fluctuating geometry (to the extent it has a meaning) is some
stochastic path, as illustrated in Fig. 2.

The operational meaning of the smeared lightcone can be understood

by considering a source and a detector of photons. If we ignore the finite

sizes of photon wavepackets, then in the absence of lightcone fluctuations,

all photons should traverse the interval between the source and the detector

in the same amount of time. The effect of the lightcone fluctuations is to
cause some photons to travel slower than the classical light speed and others

to travel faster. The Gaussian function in Eq. (9) is symmetrical about the

classical lightcone, s 0 5 0, so the quantum lightcone fluctuations are equally

likely to produce a time advance as a time delay, as illustrated in Fig. 1. The

typical time delay or advance is of the order of

D t ’
! ^ s 2

1 &

r
(17)

where r is the distance between the source and detector. Note that D t is an

ensemble-averaged time variation. It is not necessarily the expected variation

Fig. 2. A photon is emitted at point 1 and detected at point 2 at a distance r. A second photon

is emitted at point 18 and detected at point 28. In the absence of metric fluctuations, a photon

propagates on the classical lightcone, illustrated by the dashed lines. Metric fluctuations cause

the photon to move on a stochastic trajectory with a propagation time which may either be

larger or smaller than the classical flight time. The mean trajectory for a fixed flight time is

illustrated by the solid lines.
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in the arrival times of two photons which are emitted by the source in rapid

succession. The reason for this is that the spacetime geometry fluctuates on

a characteristic time scale of the order of the typical graviton wavelength. If
the interval between the emission of the two photons is small compared to

this timescale, they both travel in nearly the same spacetime geometry. If

the interval is much longer, the geometry has changed significantly, and the

variation in flight times is then D t. This issue is discussed in detail in ref. 4.

Under most circumstances, the effects of the lightcone fluctuations will

be exceedingly small. Consider, for example, a thermal bath of gravitons at
temperature T. If the flight distance is large compared to the average graviton

wavelength, then [3, 4]

D t ’
1

10 ! r

T
5

1

10
,p ! rTp

,pT
(18)

where ,p and Tp are the Planck length and Planck temperature, respectively.
Suppose, for example, that the universe is currently filled with a thermal

bath of gravitons at T 5 3 K and that r is the distance to a typical quasar,

r ’ 1010 cm. Then one finds that D t ’ 102 32 sec, presumably much too

small to be detectable.

2.2. Black Hole Horizon Fluctuations

There is a particular situation in which lightcone fluctuations take on

added interest. This is when the lightcone in question is a spacetime horizon,

and we hence have horizon fluctuations. The possibility of horizon fluctua-

tions takes on a special significance in the case of a black hole horizon. In
addition to the possibility of information leaking out of the interior of a black

hole into the exterior region, there is a chance that even minute horizon

fluctuations could upset the beautiful connection between thermodynamics

and black hole physics that was discovered by Hawking.

To understand the potential problem posed by horizon fluctuations, let

us recall the essential features of Hawking’ s derivation, as given in the original
paper [6 ]. Consider the spacetime of a black hole formed by gravitational

collapse (Fig. 3). The null ray which forms the future horizon leaves ( 2 at

advanced time v 5 v0. The modes into which the outgoing thermal radiation

will be created leave ( 2 at values of v slightly less than v0, pass through the

collapsing body, and reach (+ as outgoing rays, on which the retarded time

u is constant. Hawking shows that the relation between the values of v and
of u is (in our units where 16 p G 5 1)

u 5 2
M

4 p
ln 1 v0 2 v

A 2 (19)

where A is a constant. Thus u ® ` as v ® v0. As seen by an observer at
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Fig. 3. The spacetime for a black hole formed by gravitational collapse. The shaded region is

the interior of the collapsing star. A null ray which leaves ( 2 with advanced time v 0 becomes

the future horizon, H +. A ray which leaves at an earlier time v passes through the collapsing

body and reaches (+ at retarded time u. The dashed line is the worldline of an observer who

falls into the black hole after its formation.
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infinity, these outgoing rays must hover extremely close to the horizon for

a very long time. If one starts with a black hole with a mass M large compared

to the Planck mass mp , the semiclassical description should hold for the time
required for the black hole to lose most of its original mass. Let

tevap 5 M 3 5 M 1 Mmp 2
2

(2 0)

be this characteristic evaporation time. The basic problem posed by the
horizon fluctuations is that they may cause an outgoing ray either to fall

back into the black hole or else to prematurely escape. In either case, the

semiclassical picture of black hole radiance would need to be modified at

times less than tevap.

In ref. 5 this question is analyzed using the lightcone smearing formalism

described earlier. In order to do a detailed analysis, it would be necessary to
obtain the renormalized graviton two-point function in a black hole spacetime

in order to calculate ^ s 2
1 & using Eq. (15). This is would be a very difficult

undertaking, so in ref. 5 a heuristic, order-of-magnitude analysis was given.

The crucial assumption in this analysis was that the renormalized graviton

two-point function near the horizon in the frame of reference of geodesic
observers falling from rest at infinity is of the order of the inverse square of

the horizon radius. This assumption is motivated by the observation that ^ f 2 & ,
where f is a scalar field, typically is of the order of the inverse square of

the local radius of curvature of spacetime when the quantum state in question

is a ª vacuum-likeº state which does not depend upon any length scales other

than those of the spacetime geometry. It is consistent with an estimate given
by York [7], who quantized the lowest modes of vibration of a Schwarzschild

black hole and found that the root-mean-square metric fluctuations in these

modes is of the order of that given by this assumption.

It is necessary to have an operational definition of the magnitude of the

horizon fluctuations. One such definition can be formulated by considering

an infalling observer crossing the event horizon (see Fig. 4). If there is a
fixed classical horizon, then all outgoing light rays emitted by this observer

before some proper time t c will reach infinity, and none of the rays emitted

after t c will do so. If, however, the horizon is undergoing quantum fluctuations,

there will be a finite time interval peaked around t c in which rays may either

escape to infinity or fall into the black hole. Thus some rays which are

emitted after t c escape, and others emitted before t c , fall into the black hole.
The horizon fluctuations will be the limit of lightcone fluctuations as the

observer approaches the location of the classical horizon. Let D t i be the

uncertainty, due to lightcone fluctuations, in the time of emission of a ray

which reaches a distant observer. When the infalling observer is very close
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Fig. 4. An observer falling across the future horizon H + of a black hole emits photons which

reach (+. In the presence of metric fluctuations, these photons need not follow the classical

lightcone (solid line), but rather may follow timelike or spacelike paths in the background

geometry (dotted lines). The characteristic variation in emission time, as measured in the frame

of the infalling observer, of photons which reach (+ at the same point is D t i.

to the classical horizon, we wish to compare D t i with the proper time required

to cross the outgoing null lines associated with the modes which give the

dominant contribution to the black hole evaporation. These outgoing line

have u ’ tevap, corresponding to a ray which enters the collapsing body just

before black hole formation and reaches a large distance from the black hole
late in the evaporation process. It may be shown that the proper time required

to fall in the Schwarzschild geometry from u ’ tevap to u 5 ` is of the order of

d t ’ M e 2 M2/m2
p (21)

where M is the black hole mass and mp is the Planck mass. Note that d t is

typically far below the Planck length, so even Planck-scale fluctuations could
greatly alter black hole thermodynamics. It is shown in ref. 5 that as the

observer crosses the u ’ tevap ray, the uncertainty in the time of emission of

an outgoing ray is of the order of

D t i ’
mp

M
d t (22)
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Hence so long as M À mp , D t i ¿ d t . From this result, we conclude that

the horizon fluctuations do not invalidate the semiclassical derivation of the

Hawking effect until the black hole’ s mass approaches the Planck mass. This
is the point at which we would expect the semiclassical treatment to fail.

3. PASSIVE METRIC FLUCTUATIONS

We now turn to the problem of spacetime metric fluctuations which are

driven by quantum fluctuations of the source, the matter-stress tensor. The

expectation value of the stress tensor operator for a quantum field is formally

divergent and needs to be renormalized. In Minkowski spacetime, this may

be accomplished simply by normal ordering with respect to the Minkowski
vacuum state. This amounts to defining the stress tensor in the vacuum state

to be zero. On a curved spacetime, the renormalization is more complicated,

but has been throughly investigated. In order to address the fluctuations of

the stress tensor, it is necessary to give meaning to the expectation value of

a product of stress tensor operators. For example, we would say the the

energy density at a point is fluctuating significantly when the expectation
value of the squared energy density at that point differs noticeably from the

square of the expectation value.

We will restrict our attention here to the case of Minkowski spacetime.

Even here the problem of defining squared stress tensors is nontrivial. Let

T(x) 5 : f 1(x) f 2(x): be a normal-ordered quadratic operator, such as a stress

tensor component. The expectation value of T in any physically realizable
state is finite. In Minkowski spacetime, normal ordering simply means sub-

traction of the expectation value in the Minkowski vacuum state:

T(x) 5 : f 1(x) f 2(x) : 5 f 1(x) f 2(x) 2 ^ f 1(x) f 2(x) & 0 (23)

Now consider the square of T. It may be shown using Wick’ s theorem that

T(x)T(x8) 5 S 0 1 S1 1 S2 (24)

where

S 0 5 ^ f 1(x) f 1(x8) & 0; ^ f 2(x) f 2(x8) & 0 1 ^ f 1(x) f 2(x8) & 0 ^ f 2(x) f 1(x8) & 0 (25)

S1 5 : f 1(x) f 1(x8): ^ f 2(x) f 2(x8) & 0 1 : f 1(x) f 2(x8): ^ f 2(x) f 1(x8) & 0

1 : f 2(x) f 1(x8): ^ f 1(x) f 2(x8) & 0 1 : f 1(x) f 2(x8): ^ f 2(x) f 1(x8) & 0 (26)

and

S2 5 : f 1(x) f 2(x) f 1(x8) f 2(x8): (27)

Thus the operator product T(x)T(x8) consists of a purely vacuum part S 0, a
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fully normal-ordered part S2, and a part S1 which is a cross term between

the vacuum and normal-ordered parts.

So long as x and x8 are distinct nonnull-separated points, all three parts
have finite expectation values. However, in the coincidence limit, x8 5 x,

only the fully normal-ordered part remains finite. The purely vacuum part

does not pose a serious problem, as we can restrict our attention to the

difference in the expectation value in an arbitrary state and in the vacuum state:

^ T(x)T(x8) & 2 ^ T(x)T(x8) & 0 5 ^ S1 & 1 ^ S2 & (28)

Although ^ S2 & is always finite, ^ S1 & is both infinite and state dependent in the
coincidence limit.

There seem to be two possible approaches to this problem. One is to

impose some additional renormalization to remove the infinity, and the other

is to replace the local operator products by finite spatially or temporally

averaged quantities. If one adopts the former approach, the simplest possibility
is to drop the cross term S1 and use only the fully normal-ordered part. This

approach was used in refs. 8 and 9, where it was shown that one obtains the

correct classical limit in the sense that

^ :T(x)T(x8): & 5 ^ S2 & 5 ^ T(x) & ^ T(x8) & (29)

if the quantum state is a coherent state. This implies that a classical field

excitation, which is described by a coherent state, exhibits no quantum fluctua-
tions in its stress tensor.

The fluctuations of the energy density and the limits of the semiclassical

theory of gravity were examined in ref. 9 using the normal-ordered definition

of the squared energy density. It was found that the fractional fluctuations

in the energy density, as measured by the quantity

D 5
^ r 2 & 2 ^ r & 2

^ r 2 &
(30)

become large for states with locally negative energy density. These include
squeezed states and Casimir vacuum states. For the case of the Casimir effect

for a massless scalar field, one can prove that D $ 1/3, and typically one

finds from explicit calculation that D is of order unity. Thus if one were to

measure the local Casimir energy density at a given point in space and time,

the result of a given measurement is likely to vary by a factor of two or

more from the mean value. This implies that the gravitational field created
by a highly squeezed state or by Casimir energy is not described by a fixed

classical metric, but rather by a fluctuating metric. The flat spacetime results

of ref. 9 have been generalized to symmetrical curved spacetimes by Phillips

and Hu [10].
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An important area of application of metric fluctuations is to the study

of the early universe, especially to the problem of structure formation. This

topic has been discussed by many authors (see, for example, refs. 11 and
12). In many models, quantum fluctuations of a matter field produce primor-

dial density perturbations that later form galaxies. This is one example where

small fluctuations have the potential to eventually produce large effects.

One may apply the normal-ordering prescription to study fluctuations

in the Hawking flux from an evaporating black hole. Let F(t) 5 Trt be the

flux operator. The correlation function

C(t, t8) 5 ^ :F(t)F(t8): & 2 ^ F(t) & ^ F(t8) & (31)

has a value of the order of ^ F & 2 when t 5 t8, and decays monotonically with

increasing ) t 2 t8 ) with a characteristic time scale of the order of M, the light

travel time across the black hole [15 ]. This implies that the Hawking flux

undergoes large fluctuations on a time scale of M.
If one wishes to retain the S1 term, there seems to be no alternative but

to give up the notion of a well-defined local energy density. It is still possible

to have finite observables, provided that they can be expressed as convergent

integrals. Whether this can always be done is unclear. Barton [13 ] advocated

this approach for the study of the fluctuations of the Casimir force. He

examined a force operator which has been averaged over space and time and
found that the fluctuations of this operator are finite for a nonzero averaging

time, but diverge in the limit that this time goes to zero. When the stress

tensor is exerting a force on a material body, there is a natural cutoff provided

by the fact that real materials are transparent to very high frequency modes.

In this case, the infinite fluctuations can be explained away as an artifact of

an unphysical assumption of perfect reflectivity. No such cutoff seems to
exist in gravity, short of the Planck scale. High-frequency modes produce

increasing gravitational effects as the frequency rises. There is a possibility

that exotic physics at the Planck scale introduces a cutoff through a fractal

nature of spacetime at that scale. This idea is, however, highly speculative.

In any case, a cutoff at the Planck scale would not prevent unacceptably
large effects from arising.

This point may be illustrated by considering linearized gravity coupled

to a quantum matter field. The metric perturbation due to a classical source

T m n is, in the harmonic gauge,

h m n (x) 5
1

2 # d 4x8 Gret(x 2 x8)T m n (x8) (32)

Now let T m n and hence h m n become quantum operators. The correlation func-

tion for the metric perturbation becomes
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^ h m n (x)h r s (x8) & 5
1

4 # d 4x1 d 4x2 Gret(x 2 x1)Gret(x8 2 x2)

3 ^ :T m n (x1): :T r s (x2): & (33)

We might try to use this correlation function to calculate the rate at which

gravitons are emitted by a cavity containing photons is some quantum state.
If only the fully normal-ordered part of the stress tensor product is retained,

this rate is finite and usually very small [8, 14 ]. However, if we keep the S1

cross terms, the integrand is singular at points where x1 5 x2. The leading

term will go as

1

(x1 2 x2)
6 , x2 ® x1 (34)

and appears to render the integral for the power radiated in gravitons infinite.

If one adopts the view that Planck-scale physics is needed to avoid this

infinity, one would presumably cut off the integration at the point that ) x1 2
x2 ) ’ ,p. This leads to a very large answer, at least of the order of E/,p ,

where E is the electromagnetic energy in the cavity, in which case all of this
energy would be radiated in gravitons on the order of a Planck time. The

observed fact that microwave ovens function without noticeable loss of power

to gravitons proves that this line of argument is false.

An alternative approach might be to try to redefine these apparently

divergent integrals by an integration by parts. The basic idea can be illustrated

as follows:

#
`

2 `

dt1 dt2 f (t1) f (t2)
1

(t1 2 t2)
4

5 2
1

12 #
`

2 `

dt1 dt2 f (t1) f (t2)
- 4

- t21 - t22
ln [(t1 2 t2)

2 m 2 ]

5 2
1

12 #
`

2 `

dt1 dt2 fÈ (t1) fÈ (t2) ln[(t1 2 t2)
2 m 2 ] (35)

where m is an arbitrary constant. We have assumed that the function f (t)
vanishes as ) t ) ® ` , so the surface terms in the integration by parts vanish.
The effect of this manipulation is to replace the apparently nonintegrable

singularity in the first integral by a mild, integrable singularity in the final

integral. This trick has been employed by various authors under the labels

ª generalized principal value integrationº [16 ] or ª differential regulariza-

tionº [17 ].
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Let us discuss briefly a simple model in which this idea may be applied.

Consider an electrically polarizable particle (e.g., an atom) which interacts

with the electromagnetic field through the interaction Hamiltonian

Hint 5 2
1

2
a :E 2: (36)

where E is the quantized electric field operator and a is the polarizability,

which will here assumed to be independent of frequency. If the particle has

mass m and moves nonrelativistically, then the force operator is

F 5 2 ¹ Hint (37)

and the velocity operator is

v(t) 5 vi 1
1

m #
t

ti

dt8 F(t8) 5 vi 2
a

2m #
t

ti

dt8 ¹ :E 2: (38)

where vi is the velocity at time t 5 ti. The quantum fluctuations of the
electromagnetic field result in a fluctuating force acting upon the particle.

This in turn causes it to undergo Brownian motion, for which Eq. (38) may

be viewed as being the Langevin equation. The mean classical trajectory of

the particle is described by

^ x & 5 xi 1 #
t

ti

dt8 ^ v(t8) & (39)

and the fluctuations around this trajectory are described by quantities such
as ^ v2 & .

Consider the case of a particle which starts from rest in the distant past,

so vi 5 0 and ti 5 2 ` . Let the quantum state of the electromagnetic field

be a coherent state for a single mode. In this case, the velocity fluctuations

come entirely from the S1 cross term, as can be seen from Eq. (29). From
Eqs. (26) and (38) we find that

D ^ v2 & 5 ^ v2 & 2 ^ v & ? ^ v & 5
a 2

m2 #
t

2 `

dt1 dt2 ¹ 1 ? ¹ 2 [̂ :E1iE2j: & ^ E
i
1 E j

2 & 0] (4 0)

Here ^ E i
1 E j

2 & 0 is the electric field two-point function, and the labels 1 and 2

refer to the spacetime location of the particle at times t1 and t2, respectively.

Because the quantum state is a single mode coherent state,

^ :E1i E2j: & 5 %1i%2j (41)

where %i is the classical electric field in this state. In general, the integrand

in Eq. (4 0) has to be evaluated along a mean classical trajectory of the
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particle. The problem is greatly simplified if we assume that the particle does

not move appreciably in space and is at the origin of our coordinates, so

after the spatial derivatives have been evaluated we set x1 5 x2 5 0.
Take an explicit example in which the classical field is that of a mono-

chromatic traveling wave:

%x 5 A cos[v (t 2 z) ], %y 5 %z 5 0 (42)

In this case, the relevant component of the two-point function is

^ E x
1E

x
2 & 0 5

( D t)2 1 ( D x)2 2 2( D x)2

p 2 [( D t)2 2 ( D x)2 ]3
(43)

where D x 5 x2 2 x1 is the spatial separation of the two points, and D x is

its x component. If we insert these forms into Eq. (4 0), the resulting integral

is formally divergent. Furthermore, integration by parts alone does not solve

the problem because there can be singular surface terms. Such terms can

only be avoided if we assume that the classical electromagnetic field is

adiabatically switched on and then off again, and we attempt to evaluate
D ^ v2 & only in the asymptotic region after the switchoff. If the classical field

is switched on for a time of the order of T À v 2 1, then a detailed calculation

using results such as Eq. (35) yields

D ^ v2 & ’
2 a 2 v 5A2

15 p m2 T (44)

Thus the particle undergoes Brownian motion with mean squared velocity

increasing linearly in time. If one evaluates the magnitude of this effect for
a real atom, the result is far too small to be experimentally observed. For

example, a hydrogen atom placed in a laser beam of wavelength 6000 AÊand

intensity 106 W/cm2 for 1 day would experience a D ^ v2 & corresponding to a

temperature of only 102 4 K.

4. SUMMARY AND DISCUSSION

We have examined simple models for both active and passive metric

fluctuations. In the former case, it is possible to have lightcone fluctuations

due to a bath of gravitons. Such fluctuations manifest themselves in a variable

speed of propagation of photons through the spacetime region containing the

gravitons. If spacetime is not Minkowskian, then even in the vacuum state
there will be nonzero lightcone fluctuations. For example, a flat spacetime

with periodicity in one spatial direction will exhibit lightcone fluctuations

due to Casimir fluctuations of the quantized gravitational field [18 ]. The

same effect occurs in curved spacetimes. In spacetimes with classical horizons,
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the metric fluctuations lead to quantum horizon fluctuations. For a black hole

this has the possibility to greatly alter the evaporation process. However,

estimates of the magnitude of the effect indicate that this does not in fact
happen.

In the case of passive fluctuations due to a quantum stress tensor, the

major challenge is to understand clearly stress tensor fluctuations. One can

adopt the viewpoint that the expectation value of the squared energy density

should be as well defined as a local quantity as is that of the energy density.

In this case, a renormalization prescription such as normal ordering is needed.
This approach does seem to give consistent results in that highly squeezed

quantum states exhibit large stress tensor fluctuations, whereas coherent states

do not. The other approach is to give up the notion of a local mean squared

energy density, and look only at integrated quantities. If this viewpoint is

correct, it must be possible to give a finite value to all integrals which

represent observable quantities. Whether this can be done is not yet clear.
The model of a polarizable particle in an electric field discussed in the

previous section offers some insights into this problem. It is in fact possible

to define the change in the mean squared velocity of the particle if one makes

measurements only after the classical electric field has been switched off.

Then the formally divergent integral can be redefined to yield a finite and
rather small value. However, the notion of the instantaneous squared velocity

seems to cease to have any meaning.

One may hope that this type of model can lead to insights for the case

of gravity. It is reasonable to suppose that the same principles which determine

the force fluctuations on material bodies should also determine the fluctuations

in the source of the gravitational field. Although these force fluctuations may
be very small, they are far larger than most quantum effects associated with

gravity. This suggests the intriguing possibility that one might find a way to

perform experiments on the former and thus learn about the latter.
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